优雅关闭和资源清理
之前的程序,如果使用 ctrl-c
的方法来关闭,所有的线程都会立即停止,这会造成正在请求的用户感知到一个明显的错误。
因此我们需要添加一些优雅关闭( Graceful Shutdown ),以更好的完成资源清理等收尾工作。
为线程池实现 Drop
当线程池被 drop 时,需要等待所有的子线程完成它们的工作,然后再退出,下面是一个初步尝试:
#![allow(unused)] fn main() { impl Drop for ThreadPool { fn drop(&mut self) { for worker in &mut self.workers { println!("Shutting down worker {}", worker.id); worker.thread.join().unwrap(); } } } }
这里通过实现 Drop
特征来为线程池添加资源收尾工作,代码比较简单,就是依次调用每个线程的 join
方法。编译下试试:
#![allow(unused)] fn main() { $ cargo check Checking hello v0.1.0 (file:///projects/hello) error[E0507]: cannot move out of `worker.thread` which is behind a mutable reference --> src/lib.rs:52:13 | 52 | worker.thread.join().unwrap(); | ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this method call | | | move occurs because `worker.thread` has type `JoinHandle<()>`, which does not implement the `Copy` trait | note: this function takes ownership of the receiver `self`, which moves `worker.thread` For more information about this error, try `rustc --explain E0507`. error: could not compile `hello` due to previous error }
这里的报错很明显,worker.thread
试图拿走所有权,但是 worker
仅仅是一个可变借用,显然是不可行的。
目前来看,只能将 thread
从 worker
中移动出来,一个可行的尝试:
#![allow(unused)] fn main() { struct Worker { id: usize, thread: Option<thread::JoinHandle<()>>, } }
对于 Option
类型,可以使用 take
方法拿走内部值的所有权,同时留下一个 None
在风中孤独凌乱。继续尝试编译驱动开发模式:
$ cargo check
Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `join` found for enum `Option` in the current scope
--> src/lib.rs:52:27
|
52 | worker.thread.join().unwrap();
| ^^^^ method not found in `Option<JoinHandle<()>>`
|
note: the method `join` exists on the type `JoinHandle<()>`
help: consider using `Option::expect` to unwrap the `JoinHandle<()>` value, panicking if the value is an `Option::None`
|
52 | worker.thread.expect("REASON").join().unwrap();
| +++++++++++++++++
error[E0308]: mismatched types
--> src/lib.rs:72:22
|
72 | Worker { id, thread }
| ^^^^^^ expected enum `Option`, found struct `JoinHandle`
|
= note: expected enum `Option<JoinHandle<()>>`
found struct `JoinHandle<_>`
help: try wrapping the expression in `Some`
|
72 | Worker { id, thread: Some(thread) }
| +++++++++++++ +
先来解决第二个类型不匹配的错误:
#![allow(unused)] fn main() { impl Worker { fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker { // --snip-- Worker { id, thread: Some(thread), } } } }
简单搞定,回头看看第一个错误,既然换了 Option
,就可以用 take
拿走所有权:
#![allow(unused)] fn main() { impl Drop for ThreadPool { fn drop(&mut self) { for worker in &mut self.workers { println!("Shutting down worker {}", worker.id); if let Some(thread) = worker.thread.take() { thread.join().unwrap(); } } } } }
注意这种 if let
的写法,若 worker.thread
已经是 None
,什么都不会发生,符合我们的预期; 若包含一个线程,那就拿走其所有权,然后调用 join
。
停止工作线程
虽然调用了 join
,但是目标线程依然不会停止,原因在于它们在无限的 loop
循环等待,看起来需要借用 channel
的 drop
机制:释放 sender
发送端后,receiver
接收端会收到报错,然后再退出即可。
#![allow(unused)] fn main() { pub struct ThreadPool { workers: Vec<Worker>, sender: Option<mpsc::Sender<Job>>, } // --snip-- impl ThreadPool { pub fn new(size: usize) -> ThreadPool { // --snip-- ThreadPool { workers, sender: Some(sender), } } pub fn execute<F>(&self, f: F) where F: FnOnce() + Send + 'static, { let job = Box::new(f); self.sender.as_ref().unwrap().send(job).unwrap(); } } impl Drop for ThreadPool { fn drop(&mut self) { drop(self.sender.take()); for worker in &mut self.workers { println!("Shutting down worker {}", worker.id); if let Some(thread) = worker.thread.take() { thread.join().unwrap(); } } } } }
上面做了两处改变:
- 为
sender
增加Option
封装,这样可以用take
拿走所有权,跟之前的thread
一样 - 主动调用
drop
关闭发送端sender
关闭 sender
后,将关闭对应的 channel
,意味着不会再有任何消息被发送。随后,所有的处于无限 loop
的接收端将收到一个错误,我们根据错误再进行进一步的处理。
#![allow(unused)] fn main() { impl Worker { fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker { let thread = thread::spawn(move || loop { let message = receiver.lock().unwrap().recv(); match message { Ok(job) => { println!("Worker {id} got a job; executing."); job(); } Err(_) => { println!("Worker {id} disconnected; shutting down."); break; } } }); Worker { id, thread: Some(thread), } } } }
为了快速验证代码是否正确,修改 main
函数,让其只接收前两个请求:
fn main() { let listener = TcpListener::bind("127.0.0.1:7878").unwrap(); let pool = ThreadPool::new(4); for stream in listener.incoming().take(2) { let stream = stream.unwrap(); pool.execute(|| { handle_connection(stream); }); } println!("Shutting down."); }
take
是迭代器 Iterator
上的方法,会限制后续的迭代进行最多两次,然后就结束监听,随后 ThreadPool
也将超出作用域并自动触发 drop
。
$ cargo run
Compiling hello v0.1.0 (file:///projects/hello)
Finished dev [unoptimized + debuginfo] target(s) in 1.0s
Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3
可以看到,代码按照我们的设想如期运行,至此,一个基于线程池的简单 Web 服务器已经完成,下面是完整的代码:
完整代码
// src/main.rs use hello::ThreadPool; use std::fs; use std::io::prelude::*; use std::net::TcpListener; use std::net::TcpStream; use std::thread; use std::time::Duration; fn main() { let listener = TcpListener::bind("127.0.0.1:7878").unwrap(); let pool = ThreadPool::new(4); for stream in listener.incoming().take(2) { let stream = stream.unwrap(); pool.execute(|| { handle_connection(stream); }); } println!("Shutting down."); } fn handle_connection(mut stream: TcpStream) { let mut buffer = [0; 1024]; stream.read(&mut buffer).unwrap(); let get = b"GET / HTTP/1.1\r\n"; let sleep = b"GET /sleep HTTP/1.1\r\n"; let (status_line, filename) = if buffer.starts_with(get) { ("HTTP/1.1 200 OK", "hello.html") } else if buffer.starts_with(sleep) { thread::sleep(Duration::from_secs(5)); ("HTTP/1.1 200 OK", "hello.html") } else { ("HTTP/1.1 404 NOT FOUND", "404.html") }; let contents = fs::read_to_string(filename).unwrap(); let response = format!( "{}\r\nContent-Length: {}\r\n\r\n{}", status_line, contents.len(), contents ); stream.write_all(response.as_bytes()).unwrap(); stream.flush().unwrap(); }
#![allow(unused)] fn main() { // src/lib.rs use std::{ sync::{mpsc, Arc, Mutex}, thread, }; pub struct ThreadPool { workers: Vec<Worker>, sender: Option<mpsc::Sender<Job>>, } type Job = Box<dyn FnOnce() + Send + 'static>; impl ThreadPool { /// Create a new ThreadPool. /// /// The size is the number of threads in the pool. /// /// # Panics /// /// The `new` function will panic if the size is zero. pub fn new(size: usize) -> ThreadPool { assert!(size > 0); let (sender, receiver) = mpsc::channel(); let receiver = Arc::new(Mutex::new(receiver)); let mut workers = Vec::with_capacity(size); for id in 0..size { workers.push(Worker::new(id, Arc::clone(&receiver))); } ThreadPool { workers, sender: Some(sender), } } pub fn execute<F>(&self, f: F) where F: FnOnce() + Send + 'static, { let job = Box::new(f); self.sender.as_ref().unwrap().send(job).unwrap(); } } impl Drop for ThreadPool { fn drop(&mut self) { drop(self.sender.take()); for worker in &mut self.workers { println!("Shutting down worker {}", worker.id); if let Some(thread) = worker.thread.take() { thread.join().unwrap(); } } } } struct Worker { id: usize, thread: Option<thread::JoinHandle<()>>, } impl Worker { fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker { let thread = thread::spawn(move || loop { let message = receiver.lock().unwrap().recv(); match message { Ok(job) => { println!("Worker {id} got a job; executing."); job(); } Err(_) => { println!("Worker {id} disconnected; shutting down."); break; } } }); Worker { id, thread: Some(thread), } } } }
可以做的更多
事实上,我们还可以做更多,但是受制于篇幅,就不再展开,感兴趣的同学可以自行完成。
- 增加更多的文档
- 为线程池增加测试
- 尽可能移除
unwrap
,替换为错误处理 - 使用线程池完成其它类型的工作,而不仅仅是本章的 Web 服务器
- 在
crates.io
上找到一个线程池实现,然后使用该包实现一个类似的 Web 服务器
上一章节的遗留问题
在上一章节的末尾,我们提到将 let
替换为 while let
后,多线程的优势将荡然无存,原因藏的很隐蔽:
Mutex
结构体没有提供显式的unlock
,要依赖作用域结束后的drop
来自动释放let job = receiver.lock().unwrap().recv().unwrap();
在这行代码中,由于使用了let
,右边的任何临时变量会在let
语句结束后立即被drop
,因此锁会自动释放- 然而
while let
(还包括if let
和match
) 直到最后一个花括号后,才触发drop
#![allow(unused)] fn main() { impl Worker { fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker { let thread = thread::spawn(move || { while let Ok(job) = receiver.lock().unwrap().recv() { println!("Worker {id} got a job; executing."); job(); } }); Worker { id, thread } } } }
根据之前的分析,上面的代码直到 job()
任务执行结束后,才会释放锁,去执行另一个请求,最终造成请求排队。