最终代码
这一章真不好写( 也很难翻译... ),最终我们实现了一个 100% 安全但是功能残缺的双向链表。
同时在实现中,还有大量 Rc
和 RefCell
引起的运行时检查,最终会影响链表的性能。整个双向链表实现史就是一部别名和所有权的奋斗史。
总之,不管爱与不爱,它就这样了,特别是如果我们不在意内部的细节暴露给外面用户时。
而从下一章开始,我们将实现一个真正能够全盘掌控的链表,当然...通过 unsafe 代码实现!
#![allow(unused)] fn main() { use std::rc::Rc; use std::cell::{Ref, RefMut, RefCell}; pub struct List<T> { head: Link<T>, tail: Link<T>, } type Link<T> = Option<Rc<RefCell<Node<T>>>>; struct Node<T> { elem: T, next: Link<T>, prev: Link<T>, } impl<T> Node<T> { fn new(elem: T) -> Rc<RefCell<Self>> { Rc::new(RefCell::new(Node { elem: elem, prev: None, next: None, })) } } impl<T> List<T> { pub fn new() -> Self { List { head: None, tail: None } } pub fn push_front(&mut self, elem: T) { let new_head = Node::new(elem); match self.head.take() { Some(old_head) => { old_head.borrow_mut().prev = Some(new_head.clone()); new_head.borrow_mut().next = Some(old_head); self.head = Some(new_head); } None => { self.tail = Some(new_head.clone()); self.head = Some(new_head); } } } pub fn push_back(&mut self, elem: T) { let new_tail = Node::new(elem); match self.tail.take() { Some(old_tail) => { old_tail.borrow_mut().next = Some(new_tail.clone()); new_tail.borrow_mut().prev = Some(old_tail); self.tail = Some(new_tail); } None => { self.head = Some(new_tail.clone()); self.tail = Some(new_tail); } } } pub fn pop_back(&mut self) -> Option<T> { self.tail.take().map(|old_tail| { match old_tail.borrow_mut().prev.take() { Some(new_tail) => { new_tail.borrow_mut().next.take(); self.tail = Some(new_tail); } None => { self.head.take(); } } Rc::try_unwrap(old_tail).ok().unwrap().into_inner().elem }) } pub fn pop_front(&mut self) -> Option<T> { self.head.take().map(|old_head| { match old_head.borrow_mut().next.take() { Some(new_head) => { new_head.borrow_mut().prev.take(); self.head = Some(new_head); } None => { self.tail.take(); } } Rc::try_unwrap(old_head).ok().unwrap().into_inner().elem }) } pub fn peek_front(&self) -> Option<Ref<T>> { self.head.as_ref().map(|node| { Ref::map(node.borrow(), |node| &node.elem) }) } pub fn peek_back(&self) -> Option<Ref<T>> { self.tail.as_ref().map(|node| { Ref::map(node.borrow(), |node| &node.elem) }) } pub fn peek_back_mut(&mut self) -> Option<RefMut<T>> { self.tail.as_ref().map(|node| { RefMut::map(node.borrow_mut(), |node| &mut node.elem) }) } pub fn peek_front_mut(&mut self) -> Option<RefMut<T>> { self.head.as_ref().map(|node| { RefMut::map(node.borrow_mut(), |node| &mut node.elem) }) } pub fn into_iter(self) -> IntoIter<T> { IntoIter(self) } } impl<T> Drop for List<T> { fn drop(&mut self) { while self.pop_front().is_some() {} } } pub struct IntoIter<T>(List<T>); impl<T> Iterator for IntoIter<T> { type Item = T; fn next(&mut self) -> Option<T> { self.0.pop_front() } } impl<T> DoubleEndedIterator for IntoIter<T> { fn next_back(&mut self) -> Option<T> { self.0.pop_back() } } #[cfg(test)] mod test { use super::List; #[test] fn basics() { let mut list = List::new(); // Check empty list behaves right assert_eq!(list.pop_front(), None); // Populate list list.push_front(1); list.push_front(2); list.push_front(3); // Check normal removal assert_eq!(list.pop_front(), Some(3)); assert_eq!(list.pop_front(), Some(2)); // Push some more just to make sure nothing's corrupted list.push_front(4); list.push_front(5); // Check normal removal assert_eq!(list.pop_front(), Some(5)); assert_eq!(list.pop_front(), Some(4)); // Check exhaustion assert_eq!(list.pop_front(), Some(1)); assert_eq!(list.pop_front(), None); // ---- back ----- // Check empty list behaves right assert_eq!(list.pop_back(), None); // Populate list list.push_back(1); list.push_back(2); list.push_back(3); // Check normal removal assert_eq!(list.pop_back(), Some(3)); assert_eq!(list.pop_back(), Some(2)); // Push some more just to make sure nothing's corrupted list.push_back(4); list.push_back(5); // Check normal removal assert_eq!(list.pop_back(), Some(5)); assert_eq!(list.pop_back(), Some(4)); // Check exhaustion assert_eq!(list.pop_back(), Some(1)); assert_eq!(list.pop_back(), None); } #[test] fn peek() { let mut list = List::new(); assert!(list.peek_front().is_none()); assert!(list.peek_back().is_none()); assert!(list.peek_front_mut().is_none()); assert!(list.peek_back_mut().is_none()); list.push_front(1); list.push_front(2); list.push_front(3); assert_eq!(&*list.peek_front().unwrap(), &3); assert_eq!(&mut *list.peek_front_mut().unwrap(), &mut 3); assert_eq!(&*list.peek_back().unwrap(), &1); assert_eq!(&mut *list.peek_back_mut().unwrap(), &mut 1); } #[test] fn into_iter() { let mut list = List::new(); list.push_front(1); list.push_front(2); list.push_front(3); let mut iter = list.into_iter(); assert_eq!(iter.next(), Some(3)); assert_eq!(iter.next_back(), Some(1)); assert_eq!(iter.next(), Some(2)); assert_eq!(iter.next_back(), None); assert_eq!(iter.next(), None); } } }